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a b s t r a c t

This paper applies Constructal design to optimize the geometry of a T-Y-shaped cavity that penetrates
into a solid conducting wall. The objective is to minimize the global thermal resistance between the solid
and the cavity. There is uniform heat generation on the solid wall. The total volume and the cavity volume
are fixed, but the geometric lengths of the T-Y-shaped cavity can vary. The shape of T-Y cavity is optimal
under the following conditions: it penetrates the conducting wall almost completely, the shape of the
area of the solid inserted into the cavity is long enough to cross completely the T-Y-shaped cavity (ending
at the coordinate ~y ¼ 0), and this area is 14% of the total area occupied by the body and the T-Y-shaped
cavity. The results also show that the optimal T-Y-shaped cavity performs approximately 108% better
when compared with an optimal C-shaped cavity.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

This paper reports numerically the optimization of the global
performance of a T-Y-shaped cavity that intrudes into a solid con-
ducting wall. The optimization is conducted by applying Construc-
tal design. According to this method ‘‘the flow geometry is
malleable and it is deduced from a principle of global performance
maximization subjected to global constraints” [1,2]. This method is
based on Constructal theory: ‘‘the view that flow configuration
(geometry, design) can be reasoned on the basis of a principle of
configuration, generation and evolution in time toward greater glo-
bal flow access in systems that are free to morph” [3].

Many applications of Constructal theory to generate configura-
tion in nature, and engineering have been reviewed recently [4].
This reference shows how natural configuration – river basins, tur-
bulence, animal design, crack in solids, earth climate, etc., can be
predicted by principle. The same principle can be applied in the
engineering realm: packing of electronics, fuel cells, tree networks
for transport of people, goods and information, etc.

The heat transfer field has dedicated great attention to the study
of fins arrays [5,6]. In the other side, open cavities are the regions
formed between adjacent fins and they may represent essential pro-
moters of nucleate boiling: see, for example, the Vapotron effect
[7–9] that occurs as a consequence of the thermal interaction be-
tween a non-isothermal finned surface and a fluid locally subjected
to a transient change of phase. The significance of fins and cavities is
ll rights reserved.
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recognized by the application of Constructal method in the pursuit
of best shapes of assembly of fins [10,11] and cavities [12–14].

In this paper, we apply Constructal design to optimize the
geometry of the T-Y-shaped cavity. According to Constructal de-
sign, the cavity shape is free to change subject to volume con-
straints in the pursuit of maximal global performance. The global
performance indicator is the global thermal resistance between
the volume of the entire system (cavity and solid) and the sur-
roundings. For simplicity and clarity, we consider two-dimensional
bodies: the square solid and the T-Y-shaped intrusion with variable
geometric lengths.

To conclude this section, it is extremely important to mention
how this research and, in general, how the new study area of Con-
structal cavities can result strategic in the design of surface geom-
etries for enhanced vapour generation.

In fact, the use of boiling to augment heat removal from hot sur-
faces has widely proved to be one of the more effective techniques,
especially when associated to extended surfaces (e.g. Vapotron ef-
fect) or to cavities, able to improve the thermal performances of
the systems investigated.

No doubt, then, that the use of Constructal optimization to de-
sign heat exchanging modules interested by a phase change in the
coolant can add a significant contribution in the way of ever more
performing heat exchangers.
2. Mathematical model

Consider the conducting body shown in Fig. 1. The configuration
is two-dimensional, with the third dimension (W) sufficiently long
in comparison with the height H and the length L of the volume
occupied by the body. There is a T-Y-shaped cavity intruded in
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Nomenclature

a dimensionless parameter, Eq. (20)
A area [m2]
h heat transfer coefficient [W m�2 K�1]
H height [m]
k body thermal conductivity [W m�1 K�1]
L length [m]
q heat current [W]
t thickness [m]
T temperature [K]
V volume [m3]
W width [m]

Greek symbols
h dimensionless temperature, Eq. (9)
/ area fraction

w auxiliary area fraction

Subscripts
aux auxiliary
c cavity
m single optimization
mm double optimization
mmm triple optimization
o optimal
oo twice optimized
ooo three times optimized

Superscript
(~) dimensionless variables, Eq. (10)
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the body. The solid is isotropic with the constant thermal conduc-
tivity k. It generates heat uniformly at the volumetric rate q0 0 0

(W/m3). The outer surfaces of the heat generating body are per-
fectly insulated. The generated heat current (q0 0 0A) is removed by
convection heat transfer through the cavity walls. The heat transfer
coefficient h is uniform over all the exposed surfaces.

The objective of the analysis is to determine the optimal geom-
etry (H0/L0, H1/L1, H2/L2) that is characterized by the minimum glo-
bal thermal resistance (Tmax � T1)/(q0 0 0A). According to Constructal
design [3], this optimization can be subjected to two constraints,
namely, the total area constraint,

A ¼ HL ð1Þ

and the cavity area constraint,

Ac ¼ 2L1H1 þ ðH2 � H1=2ÞL2 � H0L0 ð2Þ

The area of the solid inserted into the cavity is also considered
constraint
Fig. 1. Y-T-shap
A0 ¼ H0L0 ð3Þ

as well as the auxiliary area
Aaux ¼ 2L1H2 þ L1H1 ð4Þ

Eqs. (2)–(4) can be expressed as the cavity fraction

/c ¼ Ac=A ð5Þ
the area of the solid inserted into the cavity fraction

/0 ¼ A0=A ð6Þ

and the auxiliary fraction area

w ¼ Aaux=A ð7Þ

The analysis that delivers the global thermal resistance as a
function of the geometry consists of solving numerically the heat
conduction equation along the solid region,

@2h
@~x2 þ

@2h
@~y2 þ 1 ¼ 0 ð8Þ
ed cavity.



Table 1
Numerical tests showing the achievement of grid independence (/0 = 0.1, /c = 0.2,
w = 0.6, a = 0.1, H/L = 1, H0/L0 = 8.2, H1/L1 = 0.25, H2/L2 = 3).

Number of elements hj
max jðhj

max � hjþ1
maxÞ=h

j
max j

335 35.35115 3.6802 � 10�4

1340 35.36416 1.4393 � 10�4

5360 35.36925 5.4567 � 10�5

21,440 35.37118

Table 2
Comparison between the results obtained using our MATLAB partial-differential-
equations (PDE) toolbox code (/c = 0.1, /0 = 0.00001, w = 0.5, H/L = 1, H0/L0 = 1, H1/
L1 = 0.036177, H2/L2 = 4.2524) and the numerical results [12] (D0/D1 = 0.1, L0/
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where the dimensionless variables are

h ¼ T � T1
q000A=K

ð9Þ

and

~x; ~y; ~H0; ~L0; ~H1; ~L1; ~H2; ~L2; ~H; ~L ¼ x; y;H0; L0;H1; L1;H2; L2;H; L

A1=2 ð10Þ

The outer surfaces are insulated and their boundary conditions
are

@h
@~x
¼ 0 at ~x ¼ �

~L
2

or ~x ¼
~L
2

and 0 6 ~y 6 ~H ð11Þ

@h
@~y
¼ 0 at ~y ¼ 0 and �

~L
2
6 ~x 6 �

~L2

2
or

~L2

2
6 ~x 6

~L
2
ð12Þ

@h
@~y
¼ 0 at ~y ¼ ~H and �

~L
2
6 ~x 6

~L
2

ð13Þ

L1 = 0.65).

hmax

This work 0.077402
Numerical [12] 0.076980
The boundary conditions on the cavity surfaces come from bal-
ancing the conduction and convection heat transfer, and their
dimensionless resulting values are given by
Fig. 2. Optimization of the global thermal resistance as function of H2/L2 for several
values of the fraction of the area of the solid inserted into the cavity.

Fig. 3. The behavior of the once minimized global thermal resistance (hmax)m and its
corresponding optimal (H /L ) as function of / .
� @h
@~x
¼ a2

2
h at ~x ¼ �

~L0

2
or ~x

¼
~L0

2
and ~H2 þ

~H1

2
� ~H0 6 ~y 6 ~H2 þ

~H1

2
ð14Þ

� @h
@~x
¼ a2

2
h at ~x ¼ �~L1 or ~x ¼ ~L1 and ~H2 �

~H1

2
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2
ð15Þ

� @h
@~x
¼ a2

2
h at ~x ¼ �

~L2

2
or ~x ¼

~L2

2
and 0 6 ~y 6 ~H2 �

~H1

2
ð16Þ

� @h
@~y
¼ a2

2
h at ~y ¼ ~H2 �

~H1

2
and � ~L1 6 ~x

6 �
~L2

2
or

~L2

2
6 ~x 6 ~L1 ð17Þ
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2
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6 �
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2
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ð19Þ

The parameter (a) that emerged in Eqs. (14)–(19) was already
used by Bejan and Almogbel [15] and defined as

a ¼ 2hA1=2

k

 !1=2

ð20Þ

The dimensionless form of Eqs. (1) and (5)–(7) are

1 ¼ ~H~L ð21Þ
/c ¼ ð~H2 � ~H1=2Þ~L2 þ 2~L1

~H1 � /0 ð22Þ
/0 ¼ ~H0

~L0 ð23Þ
w ¼ 2~L1

~H2 þ ~L1
~H1 ð24Þ
The maximal excess temperature, hmax, is also the dimensionless
global thermal resistance between the volume of the entire system
(cavity and solid) and the surroundings
2 2 o 0



Fig. 4. Illustration of some optimal shapes from Fig. 3.
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hmax ¼
Tmax � T1

q000A=k
ð25Þ
Fig. 5. Second optimization of the once optimized global thermal resistance and the
corresponding optimal shape (H2/L2)o as function of the ration H1/L1.
3. Numerical model

The function defined by Eq. (25) can be determined numerically,
by solving Eq. (8) for the temperature field in every assumed con-
figuration (H/L, H0/L0, H1/L1, H2/L2), and calculating hmax to see
whether hmax can be minimized by varying the configuration. In
this sense, Eq. (8) was solved using a finite elements code, based
on triangular elements, developed in MATLAB environment, pre-
cisely the PDE (partial-differential-equations) toolbox [16]. The
grid was non-uniform in both ~x and ~y, and varied from one geom-
etry to the next. The appropriate mesh size was determined by suc-
cessive refinements, increasing the number of elements four times
from the current mesh size to the next mesh size, until the crite-
rion jðh j

max � h jþ1
maxÞ=h

j
maxj < 1� 10�4 was satisfied. Here, h j

max repre-
sents the maximum temperature calculated using the current
mesh size, and h jþ1

max corresponds to the maximum temperature
using the next mesh, where the number of elements was increased
by four times. Table 1 gives an example of how grid independence
was achieved. The following results were performed by using a
range between 2000 and 10,000 triangular elements.

To test the accuracy of the numerical code, the numerical re-
sults obtained using our code in Matlab PDE have been compared
with the numerical results obtained by Biserni et al. [12]. The do-
main in this case was a T-shaped assembly of fins (/0 � 0) and
the boundary conditions were isothermal cavity surfaces, h = 0,
and isolated outer surfaces. Table 2 shows that the two sets of re-
sults agree within 0.5%.
Fig. 6. The behavior of the twice optimized global thermal resistance, (hmax)mm,
optimal ratios (H2/L2)oo and (H1/L1)o as function of /0.
4. Optimal geometry

The numerical work consisted of determining the temperature
field in a large number of configurations of the type shown in
Fig. 1. Fig. 2 shows that there is an optimal ratio H2/L2 that min-
imizes the global thermal resistance when the parameters (/0,
/c, w and a) and the degrees of freedom (H/L, H1/L1 and H0/L0)
are fixed. Note that we used the value a = 0.1 in all the simula-
tions because Bejan and Almogbel [15] illustrated an example
of application to forced convection showing that, in order of
magnitude sense, this number agrees with practical values used
by industry.

Fig. 2 also shows the optimization of the global thermal resis-
tance, hmax, for several values of the fraction of the area of the solid
inserted into the cavity, /0. The results of Fig. 2 were summarized
in Fig. 3, which presents the once minimized global thermal resis-
tance, hmax,m, and the once optimized ratio (H2/L2)o, as function of
the area of the solid inserted into the cavity fraction, /0. This figure
indicates that hmax,m and (H2/L2)o decrease when /0 increases. The
best shapes calculated in Fig. 3 are shown in Fig. 4. This figure



Fig. 7. The best shapes generated in Fig. 6.

Fig. 9. Forth optimization: minimization of the global thermal resistance as a
function of the parameter /0.
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confirms that cavities perform better when they penetrate almost
completely into the body [12–14].

The procedure to obtain the minimal overall thermal resistance
used in Figs. 2 and 3 is repeated in Fig. 5 for several values of the
second degree of freedom, the ratio H1/L1, for a fixed /0 = 0.15. This
second optimization shows that there is a second minimum. Fig. 5
also shows that the corresponding (H2/L2)o value increases when
the ratio H1/L1 also increases. The second optimization is also per-
formed for several values of /0 and the results were presented in
Fig. 6. This figure shows that the optimal ratio (H1/L1)o increases,
while the optimal ratio (H2/L2)oo and the minimal thermal resis-
tance, hmax,mm, both optimized twice decrease when /0 increases.
The best shapes optimized twice in Fig. 6 were shown in Fig. 7
for several values of /0.

The third degree of freedom (H0/L0), according to Eq. (23), de-
pends only on the parameter /0. Therefore, we used the optimal
values obtained in Fig. 6 to perform the third optimization in
Fig. 8. This figure shows that the twice optimized thermal resis-
tance decreases when the third degree of freedom, H0/L0, increases
for all the values of the parameter /0. The dashed line in Fig. 8
shows the value of the global thermal resistance for the largest al-
lowed value for the ratio H0/L0, therefore the area of the solid in-
serted into the cavity penetrates completely into the cavity and
reaches the coordinate ~y ¼ 0. This dashed line also indicates that
there is a minimum global thermal resistance as function of the
parameter /0. This optimal value is shown in Fig. 9 where the three
times minimized overall thermal resistance, hmax,mmm, and its cor-
responding optimal ratios (H2/L2)ooo, (H1/L1)oo and (Ho/L)o are plot-
ted against the area of the solid inserted into the cavity fraction, /0.
Fig. 8. Third optimization of the global thermal resistance as function of the ratio
H0/L0 for several values of the parameter /0.
The optimal design has the following optimal ratios: (H2/
L2)ooo = 2.61, (H1/L1)oo = 1.63 and (H0/L0)o = 6.77.

Finally, the best configuration of Fig. 9 is compared with the
best configuration calculated for the C-shaped cavity in Fig. 10.
This figure was accomplished under the same thermal conditions
and the same area of the cavity, i.e. Eqs. (8)–(10), appropriate
boundary conditions and Eq. (22) do apply, but Eq. (22) is replaced
by Eq. (26)

/0 ¼ ~Hc
~Lc ð26Þ

where ~Hc is the height and ~Lc is the length of the C-shaped cavity.
The comparison shows that the T-Y-shaped cavity performs approx-
imately 108% better than the C-shaped intrusion. This result was
expected: according to Constructal theory geometric complexity,
i.e. more freedom to morph [3], can increase the performance of
the system.
5. Conclusions

This work applies Constructal design method to perform the
optimization of the global thermal resistance of a T-Y-shaped
cavity.

The results show that there is an optimal shape of the cavity
that minimizes the global thermal resistance when the total vol-
ume and the cavity volume are fixed. This configuration is achieved
when the cavity penetrates almost completely in the body, the
shape of the area of the solid inserted into the cavity is long enough



Fig. 10. Comparison between the best shape of Fig. 9 and the best C-shaped cavity.
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to cross completely the T-Y cavity (ending at the coordinate ~y ffi 0),
and this area is 14% of the total area occupied by the body and the
T-Y-shaped cavity.

When compared with the C-shaped cavity under the same ther-
mal conditions and the same area of the cavity, the T-Y-shaped
cavity is approximately 108% superior.

Our results agree with former studies that show that the cavity
performs better when it penetrates almost completely into the
body. They also confirm that geometric complexity can improve
the performance of the flow system.

This study also deserves further investigation in the future;
therefore, we will learn the effect on the global thermal resistance
of the area of cavity, the aspect ratio of the body, and the parame-
ters ‘a’ and w that were not addressed in this paper.
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